一、定义不同
虚部:对于复数z=x+iy,满足等式
,其中x,y是任意实数,x称为复数z的实部,y称为复数z的虚部。 复数是普通实数的字段扩展,以便解决不能用实数单独解决的问题。
虚数:在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。
实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
二、起源不同
虚部:复数的概念来源于意大利数学家Gerolamo Cardano,16世纪,在他试图在找到立方方程的通解时,定义i为“虚构”(fictitious)。
虚数:虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
三、表达式不同
虚部:在英文中,实数是 Real Quantity,所以一般取 Real 的前两个字母 “Re” 表示一个复数的实部;虚数是 Imaginary Quantity,所以,一般取 Imaginary 的前两个字母 “Im” 表示一个复数的虚部。例如:
Re(2+3i)=2, Im(2+3i)=3;
Re(-7.38i)=0, Im(-7.38i)=-7.38。
复平面表示方法
复平面当中的点(x,y)来表示复数x+iy,其中y轴为虚轴,y的值即为虚部。
虚数:a=a+i含义为与一切事物皆无联系的概念,无论a任何变化,i都不会变。