向量平行线定理

向量平行线定理

首页维修大全综合更新时间:2023-09-17 08:47:45

向量平行线定理

1、对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量b时,有且只有一个实数λ,能使向量b=λ向量a;2、当向量a=(x1,y1),向量b=(x2,y2)时,当x1y2=x2y1时,向量a‖向量b,反之也成立。

2、“在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0”。

3、平行向量:方向相同或相反的非零向量叫平行(或共线)向量。向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量。

若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0。

4、共线定理:若b≠0,则a//b的充要条件是存在唯一实数λ,使向量a=λ向量b。若设a=(x1,y1),b=(x2,y2) ,则有 x1y2=x2y1 ,与平行概念相同。0向量平行于任何向量。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.