线面垂直的判定定理及其证明

线面垂直的判定定理及其证明

首页维修大全综合更新时间:2023-06-28 17:56:53

线面垂直的判定定理及其证明

判定定理:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。

证明:设有一直线l与面S上两条相交直线AB、CD都垂直,则l⊥面S 假设l不垂直于面S,则要么l∥S,要么斜交于S且夹角不等于90。 当l∥S时,则l不可能与AB和CD都垂直。这是因为当l⊥AB时,过l任意作一个平面R与S交于m,则由线面平行的性质可知m∥l ∴m⊥AB 又∵l⊥CD ∴m⊥CD ∴AB∥CD,与已知条件矛盾。 当l斜交S时,过交点在S内作一直线n⊥l,则n和l构成一个新的平面T,且T和S斜交(若T⊥S,则n是两平面交线。由面面垂直的性质可知l⊥S,与l斜交S矛盾)。 ∵l⊥AB ∴AB∥n ∵l⊥CD ∴CD∥n ∴AB∥CD,与已知条件矛盾。 综上,l⊥S

扩展资料:

一些基本的性质:

1、同位角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。也可以简单的说成:

2、内错角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。也可以简单的说成:

3、同旁内角互补两直线平行。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.