xe的x次方x极限是多少(e的x次方减1的极限为什么是x)

xe的x次方x极限是多少(e的x次方减1的极限为什么是x)

首页维修大全综合更新时间:2025-08-23 14:35:10

xe的x次方x极限是多少

当x趋于无穷大时,y=e的x次方没有极限。

因为lim[x-->+∞]e^x=+∞,lim[x-->-∞]e^x=0,所以当x趋于无穷大时,y=e的x次方没有极限。

详细内容:

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

方法

①利用函数连续性:

(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)

②恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

③通过已知极限

特别是两个重要极限需要牢记。

④采用洛必达法则求极限

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

lim(x->+∞) x * e^x = +∞

lim(x->- ∞) x * e^x = lim(u->+∞) - u /e^u 令 u= -x

= lim(u->+∞) - 1 /e^u = 0 洛比达法则

lim(x->∞) x * e^x 不存在。

N的相应性 

一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.