三角形重心共点证明(三角形重心怎么证明三线共点)

三角形重心共点证明(三角形重心怎么证明三线共点)

首页维修大全综合更新时间:2025-12-30 10:49:55

三角形重心共点证明

证明:

在三角形ABC中,向量BO与向量BF共线,故可设BO=xBF

根据三角形加法法则:向量AO=AB+BO

=a+ xBF=a+ x(AF-AB)

= a+ x(b/2-a)=(1-x)a+(x/2)b

向量CO与向量CD共线,故可设CO=yCD,

根据三角形加法法则:向量AO=AC+CO

=b+ yCD=b+y(AD-AC)

= b+y(a/2-b)=(y/2)a+(1-y)b.

所以向量AO=(1-x)a+(x/2)b=(y/2)a+(1-y)b

则1-x= y/2, x/2=1-y,

解得x=2/3,y=2/3.

向量BO=2/3BF,向量CO=2/3CD

即BO:OF=CO:OD=2。

∴向量AO=(y/2)a+(1-y)b=1/3a+1/3b

又因向量AE=AB+BE=a+1/2BC= a+1/2(AC-AB)

= a+1/2(b-a)=1/2a+1/2b

从而向量AO=2/3向量AE

即向量AO与向量AE共线,所以A、O、E三点共线

且有AO:OE=2。

因此,三角形ABC的三条边的中线交于一点,该点叫做三角形的重心。

三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.