双曲线渐离法推导

双曲线渐离法推导

首页维修大全综合更新时间:2023-09-30 17:30:47

双曲线渐离法推导

推导如下:由双曲线方程:x^2/a^2-y^2/b^2=1,当x≠0时,可得y/x=±√[(b^2/a^2)+(b/x)^2]当x→±∞时,b/x=0 得 y/x=±√(b^2/a^2) 即x→±∞得双曲线的渐近线方程为:y=±bx/a扩展资料无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。

当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。

y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程当焦点在x轴上时 双曲线渐近线的方程是y=[±b/a]

x当焦点在y轴上时 双曲线渐近线的方程是y=[±a/b]x

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.