点乘和叉乘的区别如下:
一、符号不同。
点乘:点乘的符号用“ · ”表示。
叉乘:叉乘的符号用“ × ”表示。
二、两者的应用范围不同:
1、点乘的应用范围:线性代数。
2、叉乘的应用范围:其应用也十分广泛,通常应用于物理学光学和计算机图形学中。
三、计算过程不同。
点乘:点乘是两个向量的模的乘积再乘上两个向量夹角的余弦值。
叉乘:叉乘是两个矢量的模的乘积再乘上这两个向量夹角的正弦值。
点积
在数学中,又称数量积(dot product; scalar product),是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。
两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:
a·b=a1b1+a2b2+……+anbn。
使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:
a·b=(a^T)*b,这里的a^T指示矩阵a的转置。