笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尓积(Cartesian product),又称直积,表示为X×Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员 。
假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。A表示所有声母的集合,B表示所有韵母的集合,那么A和B的笛卡尔积就为所有可能的汉字全拼。设A,B为集合,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合叫做A与B的笛卡尔积,记作AxB. 笛卡尔积的符号化为: A×B={(x,y)|x∈A∧y∈B} 例如,A={a,b}, B={0,1,2},则 A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)} B×A={(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}