1.哥德巴赫猜想:1个偶数可分为2个质数相加《本题未解》(本题被誉为数学王冠上的明珠,陈景润证明了1个偶数可分为1个质数加上2个质数相乘,俗称1+2)
2.费马猜想:任意自然数abc,当n大于2时,a的n次方加b的n次方必不等于c的n次方《本题已解,奖金已送出》(法律专业的费马写完这个猜想后说道:我已想到这个题目的美妙解法,无奈这页空白太少,写不下,就不写了…后来的数学家看到这句话后大为光火,奋而求解,终于在350多年后怀尔斯用模椭圆曲线和群论搞定了本题)
3.四色猜想:任何地图只要4种颜色就可以区分所有国家《本题已解》(1976年美国数学家阿佩尔、哈肯用2台计算机经过50多天100多亿次逻辑判断证明了出来,据说刚开始它作为答案仅仅是因为没人能证明该证明过程是错的)
4.植树问题:种20棵树,4棵为1行,问最多能种几行(16世纪排出16行,19世纪排出18行,20世纪末排出20行,那么你呢…)
5.欧氏第五公设问题:…等价表达…过直线外1点只有1条平行线《本题无解》(欧几里德通过这个假设推出了欧氏几何,也叫平面几何;顽强而又不幸的罗巴切夫斯基通过这个假设的反面推出了非欧几何,也叫黎曼几何,广义相对论的基础…)
6.黎曼猜想:黎曼zeta函数等0时的所有解在同一直线上《本题未解》(本题非常的神秘,据说它涉及数论函数甚至经济社会等等方面,博奕论鼻祖纳什曾经用n年时间求解此题,不幸疯掉…)
7.角谷猜想:1个自然数,是偶数就除2,是奇数就乘3加1,最后结果总会是1《本题未解》
8.单色3角形问题:有6个点,每2点用黑色或红色相连,是否必定存在1个单色3角形?《本题未解》(另一表达:6个人在一起,必有3个人认识或不认识)