asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。
1.辅助角公式是一种高等三角函数公式,其主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。该公式已被写入中学课本,表达式为asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。在使用该公式时,无论用正弦还是余弦来表示asinx+bcosx,分母的位置永远是用来表示函数名称的系数。

2.三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
导数的计算口诀
常为零,幂降次
对倒数(e为底时直接倒数,a为底时乘以1/lna)
指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna)
正变余,余变正
切割方(切函数是相应割函数(切函数的倒数)的平方)
割乘切,反分式
三角函数求导公式
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=sec²x=1+tan²x
(cotx)'=-csc²x
(secx)' =tanx·secx
(cscx)' =-cotx·cscx.
(tanx)'=(sinx/cosx)'=[cosx·cosx-sinx·(-sinx)]/cos²x=sec²x