复数的指数式表示法

复数的指数式表示法

首页维修大全综合更新时间:2023-09-17 16:18:48

复数的指数式表示法

复数指数形式:e^(iθ)=isinθ+cosθ,证明方法就是把e^(iθ)和sinθ,cosθ展开成无穷级数。

将复数化为三角表示式和指数表示式是:复数z=a+bi有三角表示式z=rcosθ+irsinθ,可以化为指数表示式z=r*exp(iθ)。

exp()为自然对数的底e的指数函数。即:exp(iθ)=cosθ+isinθ。 证明可以通过幂级数展开或对函数两端积分得到,是复变函数的基本公式。

两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.