求直角方法多种。
一、用证明方法。
例:已知△ABC中,∠A=30°,∠A,∠C对的边分别为a,c,且a=1/2c。求证∠C=90°
证明方法1:正弦定理。
在△ABC中,有a:sinA=c:sinC
将a与c的关系及∠A的度数代入之后化简得sinC=1
又∵0<∠C<180°
∴∠C=90°
证明方法2:反证法。
假设∠ACB≠90°,过B作BD⊥AC于D
在Rt△ABD中,∵∠ADB=90°,∠A=30°
∴BD= AB(30°的直角边等于斜边的一半)
又∵BC= AB
∴BC=BD
但BD是B到直线AC的垂线段,根据垂线段最短可知BD<BC,从而出现矛盾。
(或从BC=BD得∠BCD=∠BDC=90°,那么△BCD中就有两个直角,这是不可能的)
∴假设不成立,∠ACB=90°
证明方法3:利用三角形的外接圆证明。
作△ABC的外接圆,设圆心为O,连接OC,OB
∵∠BAC=30°,A在圆上
∴∠BOC=60°
∵OB=OC=半径r
∴△BOC是等边三角形,BC=OC=r
又∵AB=2BC=2r
∴AB是直径
∴∠ACB=90°(直径所对的圆周角是直角)