这得从矩阵相似的定义说起。
相似的定义为:对n阶方阵A、B,若存在可逆矩阵
P,使得P^(-1)AP=B,则称A、B相似.
从定义出发,最简单的充要条件
即是:对于给定的A、B,能够找到这样的一个P,使得:P^(-1)AP=B;或者:能够找到一个矩阵C,使得A和B均相似于C.
进一步地,如果A、B均可相似对角化,则他们相似的充要条件为:A、B具有相同的特征值
.
再进一步,如果A、B均为实对称矩阵
,则它们必可相似对角化,可以直接计算特征值加以判断(与2情况不同的是:2情况必须首先判断A、B可否相似对角化).
A、B相似的等价条件还有:
A、B均为n阶方阵,则以下命题等价:
(1)A~B;
(2)λE-A≌λE-B
(3)λE-A与λE-B有相同的各阶行列式因子
(4)λE-A与λE-B有相同的各阶不变因子
(5)λE-A与λE-B有相同的初等因子组