柯西不等式公式有哪些(柯西不等式6个基本公式)

柯西不等式公式有哪些(柯西不等式6个基本公式)

首页维修大全综合更新时间:2024-01-21 04:46:51

柯西不等式公式有哪些

1、二维形式:

(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2

等号成立条件:ad=bc

2、三角形式:

√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]

等号成立条件:ad=bc

3、向量形式:

|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)

等号成立条件:β为零向量,或α=λβ(λ∈R)。

4、一般形式:

(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2

等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。

扩展资料:

基本不等式

(1)对正实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a^2+b^2>0>-2ab

(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0

(3)对负实数a,b,有a+b<0<2√(a*b)

(4)对实数a,b(a≥b),有a(a-b)≥b(a-b)

(5)对非负数a,b,有a^2+b^2≥2ab≥0

(6)对非负数a,b,有a^2+b^2 ≥1/2*(a+b)^2≥ab

(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2

不等式的证明方法

(1)比较法:作差比较:.

作差比较的步骤:

①作差:对要比较大小的两个数(或式)作差。

②变形:对差进行因式分解或配方成几个数(或式)的完全平方和。

③判断差的符号:结合变形的结果及题设条件判断差的符号。

(2)反证法:正难则反。

(3)放缩法:将不等式一侧适当的放大或缩小以达证题目的。


大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.