1、直接法
斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。
2、利用公式cosθ=cosθ1·cosθ2
若 OA为平面的一条斜线,O为斜足,OB为OA在面α内的射影,OC为面α内的一条直线,其中θ为OA与OC所成的角θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么 cosθ=cosθ1·cosθ2 。
3、利用公式sinθ=h/ι
其中θ是斜线与平面所成的角, h是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等(等体积法)来求垂线段的长。