余数的三大性质(余数的性质四大定理)

余数的三大性质(余数的性质四大定理)

首页维修大全综合更新时间:2024-03-20 01:11:13

余数的三大性质

1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,

此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。

例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。

2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,

此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。

例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。

3、余同取余:用一个数除以几个不同的数,得到的余数相同,

此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。

例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。

4、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,

称为:“最小公倍加”,也称为:“公倍数作周期”。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.