三角形四心向量公式:PA+PB+PC=0。三角形的四心 是指三角形的重心、外心、内心、垂心。当且仅当三 角形是正三角形的时候,重心、垂心、内心、外心四 心合一心,称做正三角形的中心。
<br>三角形是由同 一平面内不在同一直线上的三条线段‘首尾’顺次连 接所组成的封闭图形,在数学、建筑学有应用。
常见 的三角形按边分有普通三角形(三条边都不相等), 等腰三角(腰与底不等的等腰三角形、腰与底相等的 等腰三角形即等边三角形);按角分有直角三角形、 锐角三角形、钝角三角形等,其中锐角三角形和钝角 三角形统称斜三角形。
1 若P是△ABC的重心 PA+PB+PC=0
2 若P是△ABC的垂心 PA·PB=PB·PC=PA·PC(内积)
3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边)
4 若P是△ABC的外心 |PA|2=|PB|2=|PC|2
(AP就表示AP向量 |AP|就是它的模)
5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心
6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心
7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)
或 AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心
8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点
【以下是一些结论的有关证明】
1.
O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量
充分性:
已知aOA向量+bOB向量+cOC向量=0向量,
延长CO交AB于D,根据向量加法得:
OA=OD+DA,OB=OD+DB,代入已知得:
a(OD+DA)+b(OD+DB) +cOC=0,
因为OD与OC共线,所以可设OD=kOC,
上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,
向量DA与DB共线,向量OC与向量DA、DB不共线,
所以只能有:ka+kb+c=0,aDA+bDB=0向量,
由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,
所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线.
必要性:
已知O是三角形内心,
设BO与AC相交于E,CO与AB相交于F,
∵O是内心
∴b/a=AF/BF,c/a=AE/CE
过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,
所以四边形OMAN是平行四边形
根据平行四边形法则,得
向量OA
=向量OM+向量ON
=(OM/CO)*向量CO+(ON/BO)*向量BO
=(AE/CE)*向量CO+(AF/BF)*向量BO
=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO
∴a*向量OA+b*向量OB+c*向量OC=向量0
2.
已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP