高中数学弦长公式是:若直线l:y=kx+b,与圆锥曲线相交与A、B两点,A(x1,y1)B(x2,y2)。弦长|AB|=√[(x1-x2)^2+(y1-y2)^2]=√[(x1-x2)^2+(kx1-kx2)^2]=√(1+k^2)|x1-x2|=√(1+k^2)√[(x1+x2)^2-4x1x2]。
例题:
知道弧长半径,求弦长。
已知弧长L=19.5米,半径R=14.2米。
设该弧所对的圆心角为φ,弦长为C,则φ=L/R(弧度),φ/2=L/2R,C=2Rsin(φ/2)。
∴C=2*14.2sin(19.5/28.4)=28.4sin[(19.5/28.4)(180°/π)]=28.4sin39.34°=28.4*0.6339=18.00276米≈18米。
1、圆的弦长公式是:弦长=2RsinaR是半径,a是圆心角。
2、2、弧长L,半径R。
3、弦长=2Rsin(L*180/πR)直线与圆锥曲线相交所得弦长d的公式。
4、弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号。