初中数学lg的运算
①加减运算,lgA+lg B=lg(A•B);
lgA-lgB=lg(A/B)
②指数运算lgA^n=nlgA
③换底运算lgA/lgB=logB(A)
例lg2+lg8=lg2+lg2^3=lg2+3lg2=4lg2
lg的运算法则
1、lg的加法法则
lgA+lgB=lg(A*B)
2、lg的减法法则
lgA-lgB=lg(A/B)
3、乘方法则
10^lgA=A
lgx是表示以10为底数的对数函数,所有的对数函数运算法则也适用于lgx。
2
对数函数的运算性质
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1 真数>0
并且,在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越小,函数值越大。(0<a<1时)
lg公式运算法则:lnx+lny=lnxy,lnx-lny=ln(x/y),lnxⁿ=nlnx,ln(ⁿ√x)=lnx/n,lne=1,ln1=0。
基本知识
恒等式及证明
a^log(a)(N)=N (a>0 ,a≠1)
推导:log(a) (a^N)=N恒等式证明
在a>0且a≠1,N>0时
设:当log(a)(N)=t,满足(t∈R)
则有a^t=N;
a^(log(a)(N))=a^t=N;
证明完毕