复数z=x+iy是学界凭空杜撰的,根本不存在。假如复数存在,它应该能够模拟平面矢量的求积运算。然而,无论是二矢量的矢量积(叉积)还是二矢量的标量积(点积),都不等于二复数的复数积。
复数的运算i方是1,复数运算法则有加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cosθ+isinθ(弧度制)推导而得。
由欧拉公式推得复数指数的ea+bi结果仍为复数,其幅角即为复数虚部b,其模长为ea。对于复底数、实指数幂(r,θ)x,其结果为(rx,θ·x)。对于复底数、复指数的幂,可用(a+bi)c+di=eln(a+bi)(c+di)来计算。