排列组合公式及算法高中(排列组合公式及算法是高中知识吗)

排列组合公式及算法高中(排列组合公式及算法是高中知识吗)

首页维修大全综合更新时间:2024-06-15 12:16:03

排列组合公式及算法高中

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。

以下是排列组合公式及算法高中阶段需要掌握的部分:

- 排列公式:A_{n}^{m}=frac{n!}{(n-m)!},其中n!表示n的阶乘,即n!=n imes(n-1) imes(n-2) imes(n-3)ldots imes1。

- 组合公式:C_{n}^{m}=frac{n!}{m! imes(n-m)!},其中0!=1。

- 排列组合的性质:A_{n}^{m}=nA_{n-1}^{m-1},C_{n}^{m}=C_{n-1}^{m-1}+C_{n-1}^{m}。

排列组合的算法有很多,以下是其中一些常见的算法:

- 枚举法:依次考虑每种可能的情况,计算出所有符合条件的排列组合数。

- 分类讨论法:将问题分成若干个不同的情况,分别计算出每个情况下的排列组合数,然后将它们相加。

- 递推法:利用排列组合的性质,通过递推公式计算出排列组合数。

- 容斥原理:利用容斥原理计算出符合条件的排列组合数。

排列组合是高中数学中比较重要的内容,需要认真学习和掌握。在学习过程中,要注意理解排列组合的概念和公式,熟练掌握各种算法,并通过练习不断提高自己的解题能力。

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);

Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;

Cn1(n为下标1位上标)=n;Cnm=Cnn-m

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.