回归直线方程公式详解(线性回归方程公式详解图解)

回归直线方程公式详解(线性回归方程公式详解图解)

首页维修大全综合更新时间:2024-07-01 20:13:27

回归直线方程公式详解

a=[∑Xi2∑Yi-∑Xi∑XiYi]/[n∑Xi2-(∑Xi)2],b=[n∑XiYi-∑Xi∑Yi]/[n∑Xi2-(∑Xi)2]

计算公式为

a=[∑Xi2∑Yi-∑Xi∑XiYi]/[n∑Xi2-(∑Xi)2],b=[n∑XiYi-∑Xi∑Yi]/[n∑Xi2-(∑Xi)2]

运用时注意的问题

资金需要量与营业业务量之间线性关系的假定应符合实际情况;确定a、b数值,应利用连续若干年的历史资料,一般要有3年以上的资料;应考虑价格等因素的变动情况。

扩展

线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。

线性回归方程公式求法

第一:用所给样本求出两个相关变量的(算术)平均值:

x_=(x1+x2+x3+...+xn)/n

y_=(y1+y2+y3+...+yn)/n

第二:分别计算分子和分母:(两个公式任选其一)

分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_

分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2

第三:计算b:b=分子/分母

用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为

其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。

先求x,y的平均值X,Y

再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)

后把x,y的平均数X,Y代入a=Y-bX

求出a并代入总的公式y=bx+a得到线性回归方程

(X为xi的平均数,Y为yi的平均数)

线性回归

线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点,将散布在某一直线周围。因此,可以认为关于的回归函数的类型为线性函数。

分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

确定回归方程的计算公式:

b=(n∑xiyi-∑xi·∑yi)÷ [n∑xi2-(∑xi)^2]

a=[(∑xi^2)∑yi-∑xi·∑xiyi]÷[n∑xi^2-(∑xi)^2]

其中xi、yi代表已知的观测点。

另有一种求a和b的“简捷”,其公式是:

b=(n∑xy-∑x·∑y)÷[n∑x^2-(∑x)^2]

a=(∑x^2∑y-∑x·∑xy)÷[n∑x^2-(∑x)^2]

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.