数学知识点负负得正的原理
1负负得正的原理 设-a、-b是两个负数 0=[a+(-a)] [a+(-a)](-b)=0 由乘法分配律 [a+(-a)](-b)=a*(-b)+(-a)*(-b)=0 a*(-b)=-ab (-a)*(-b)=0-(-ab)=ab 这就是“负负得正”的原因。
2有理数乘法法则
1.同号得正,异号得负,并把绝对值相乘。
2.任何数与零相乘,都得零。
3.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
4.几个数相乘,有一个因数为零,积就为零。
在数学乘法中负负得正的原因解释有:
1、美国数学史家和数学教育家M·克莱因通过负债模型解决了“两负数相乘得正”的问题:一人每天欠债5元,给定日期(0元)3天后欠债15元。如果将5元的宅记作-5,那么“每天欠债5元、欠债3天”可以用数学来表达:3×(-5)=-15。同样一人每天欠债5元,那么给定日期(0元)3天前,他的财产比给定日期的财产多15元。如果我们用-3表示3天前,用-5表示每天欠债,那么3天前他的经济情况课表示为(-3)×(-5)=15。
2、相反数模型5×3=5+5+5=15,(-5)×3=(-5)+(-5)+(-5)=-15,所以,把一个因数换成他的相反数,所得的积就是原来的积的相反数,故(-5)×(-3)=15。3、苏联著名数学家盖尔范德(I.Gelfand, 1913~2009)则作了另一种解释:3×5=15:得到5美元3次,即得到15美元;3×(-5)=-15:付5美元罚金3次,即付罚金15美元;(-3)×5=-15:没有得到5美元3次,即没有得到15美元;(-3)×(-5)=+15:未付5美元罚金3次,即得到15美元。上述内容参考《数学阅读精粹(第一册)》,江苏凤凰教育出版社出版,2016年6月。原载于《数学文化透视》,上海科学技术出版社出版。扩展资料:负数概念最早出现在中国,在《九章算术》中方程章给出正负数的加减运算法则,而负负得正直到13世纪末才由数学家朱士杰给出。在《算学启蒙》(1299)中,朱士杰提出:“明乘除法,同名相乘得正,异名相乘得负”。公元7世纪,印度数学家婆罗笈多(brahmayup-ta)已有明确的正负数概念,及其四则运算法则:“正负相乘得负,两负数相乘得正,两正数得正。”