流体力学之流体动力学三大方程
1、连续性方程--依据质量守恒定律推导得出;
连续性方程是质量守恒定律(见质量)在流体力学中的具体表述形式。它的前提是对流体采用连续介质模型,速度和密度都是空间坐标及时间的连续、可微函数。
2、能量方程(又称伯努利方程)--依据能量守恒定律推导得出;
能量方程是分析计算热量传递过程的基本方程之一,通常表述为:流体微元的内能增量等于通过热传导进入微元体的热量、微元体中产生的热量及周围流体对微元体所作功之和。
3、动量方程--依据动量守恒定律(牛顿第二定律)推导得出的。
动量方程是动量定理在流体力学中的具体应用。
适用条件:
流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学纳维-斯托克斯方程基于牛顿第二定律,表示流体运动与作用于流体上的力的相互关系。纳维-斯托克斯方程是非线性微分方程。
其中包含流体的运动速度,压强,密度,粘度,温度等变量,而这些都是空间位置和时间的函数。一般来说,对于一般的流体运动学问题。
需要同时将纳维-斯托克斯方程结合质量守恒、能量守恒,热力学方程以及介质的材料性质,一同求解。由于其复杂性,通常只有通过给定边界条件下,通过计算机数值计算的方式才可以求解。
拓展资料:
流体力学介绍
流体力学是力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。
如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。
质量守恒(连续性),动量守恒(N-S),能量守恒