有趣的公式(最美妙的公式大全)

有趣的公式(最美妙的公式大全)

首页维修大全综合更新时间:2024-07-20 04:21:20

有趣的公式

1. 欧拉恒等式

  这是一个非常著名的恒等式。它给出了3个看似随机的量之间的联系:π、e和-1的平方根。许多人认为这是数学中最漂亮的公式。

  一个更一般的公式是e^(ix) =cosx+isinx (a^b表示a的b次方,下同)。当x=π,cosx取值为-1,而isinx取值为0。由-1+1=0,我们得到了欧拉恒等式。

  2. 欧拉乘积公式

  等式左边的符号是无穷求和,而右边的符号则是无穷乘积。这个公式也是欧拉首先发现的。它联系了出现在等式左边的自然数(如n=1,2,3,4,5等等)与出现在等式右边的素数(如p=2,3,5,7,11等等)。而且我们可以选取s为任意大于1的数,并保证等式成立。

  欧拉乘积公式的左边是黎曼ζ函数最常见的一种表示形式。

  3. 高斯积分

  函数e^(-x?2;)本身在积分中是很难对付的。可是当我们对它在整个实数轴上积分,也就是说从负 无穷到正无穷时,我们却得到了一个十分干净的答案。至于为什么曲线下面的面积是π的平方根,这可不是一眼就能看出来的。

  由于这个公式代表了正态分布,它在统计中也十分重要。

  4. 连续统的基数

  上面的公式说明了实数集的基数与自然数全体子集的基数相同。这首先是被集合论的建立者康托尔证明的。值得注意的是,这也说明了连续统是不可数,因为2^N > N。

  一个相关的假设是连续统假设。这个假设是说,在N和R之间不存在其它的基数。有趣的是,这个假设有一个奇怪的性质:它既不能被证明也不能被证伪。

  5. 阶乘函数的解析延拓

  阶乘函数通常被定义为n!=n(n-1)(n-2)……1。但是这个定义只对n是正整数时有效,而上面积分方程则对分数和小数也有效,而且还可以用于负数、复数等等……

  同样的积分式中我们把n换成n-1就定义了伽马函数。

  6. 勾股定理

  勾股定理恐怕是这个清单中最熟悉的公式了。它给出了直角三角形三边的联系,其中a和b是直角边长,而c是斜边长。这个公式还将三角形和正方形联系了起来。

  7. 斐波那契数列的通项

  这里,注意到φ这个数字是黄金分割比例。很多人可能听说过斐波那契数列(0,1,1,2,3,5,8,13,21,34,55…,数列中每一项是前两项的和),却很少人知道有一个公式能够计算出任意某一项斐波那契数:这就是上面我们给出的公式,公式里面F(n)代表第n个斐波那契数。也就是说,为了得到第100个斐波那契数,你不需要去计算前99个,而只需要把100代入公式。

  值得注意的是,即便在计算过程中出现了许多根号和除法,最后的答案总是一个精确的正整数。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.