等比数列的通项公式an=a1·q^(n-1)的推导方法有两种:
第一种迭代法,an=a(n-1)·q=a(n-2)·q^2=a(n-3)·q^3=…=a2·q^(n-2)=a1·q^(n-1)。
第二种累乘法,an/a(n-1)=q,a(n-1)/a(n-2)=q……a2/a1,然后n个式子相乘得an/a1=q^(n-1),所以an=a1·q^(n-1)。
an=a1×q^(n-1)
等比数列的通项公式
an=a1×q^(n-1)
等比数列求和公式
(1)q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
(2)q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)
Sn=a1(1-q^n)/(1-q)的推导过程:
Sn=a1+a2+……+an
q*Sn=a1*q+a2*q+……+an*q=a2+a3+……+a(n+1)
Sn-q*Sn=a1-a(n+1)=a1-a1*q^n
(1-q)*Sn=a1*(1-q^n)
Sn=a1*(1-q^n)/(1-q)
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。
性质
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方.
对于一个数列 {an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比 q ;从第一项a1 到第n项an 的总和,记为Tn 。
那么, 通项公式为 (即a1 乘以q 的 (n-1)次方,其推导为“连乘原理”的思想:a2=a1 * q,
a3= a2 * q,
a4= a3 * q,
an=an-1 * q,
将以上(n-1)项相乘,左右消去相应项后,左边余下an , 右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。
此外, 当q=1时 该数列的前n项和:Sn=nA1(q=1)
当q≠1时 该数列前n 项的和:Sn=[A1(1-q)^n]/(1-q)
等差数列
对于一个数列{ an },如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定之差位公差,记为 d ;从第一项 a1到第n项 an的总和,记为Sn 。
那么 , 通项公式为An=A1*q^(n-1)
,其求法很重要,利用了“叠加原理”的思想:
将以上 n-1 个式子相加, 便会接连消去很多相关的项 ,最终等式左边余下an ,而右边则余下a1和 n-1 个d,如此便得到上述通项公式。
此外, 数列前 n 项的和 ,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是, ,也即,前n项的和Sn 除以 n 后,便得到一个以a1 为首项,以 d /2 位公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。