矩阵特征值的大小,从线性空间的角度看,在一个定义了内积的线性空间里,对一个N阶 对称方阵进行特征分解,就是产生了该空间的N个标准正交基,然后把矩阵投影到这N个基上。
N个特征向量就是N个标准正交基,而特征值的模则代表矩阵在每个基上的投影长度。
特征值越大,说明矩阵在对应的特征向量上的方差越大,功率越大,信息量越多。
如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。
为讨论方便,设A为m阶方阵。
证明:设方阵A的秩为n。
因为任何矩阵都可以通过一系列初等变换,变成形如:
1 0 … 0 … 0
0 1 … 0 … 0
…………………
0 0 … 1 … 0
0 0 … 0 … 0
…………………
0 0 … 0 … 0