数集的分类及关系

数集的分类及关系

首页维修大全综合更新时间:2023-09-16 12:39:00

数集的分类及关系

数集的分类:

所有正整数组成的集合称为正整数集,记作N*,Z+或N+;

所有负整数组成的集合称为负整数集,记作Z-;

全体非负整数组成的集合称为非负整数集(或自然数集),记作N;

全体整数组成的集合称为整数集,记作Z;

全体有理数组成的集合称为有理数集,记作Q;

全体实数组成的集合称为实数集,记作R;

全体虚数组成的集合称为虚数集,记作I;

全体实数和虚数组成的复数的集合称为复数集,记作C。

注意:+表示该数集中的元素都为正数,-表示该数集中的元素都为负数,*表示在剔除该数集的元素0(例如,R*表示剔除R中元素0后的数集。即R*=R{0}=R-∪R+=(-∞,0)∪(0,+∞)。)。

数集与数集之间的关系:

N*⊊N⊊Z⊊Q⊊R⊊C,

Z*=Z+∪Z-,

Q={m/n|m∈Z,n∈N*}={分数}={循环小数},

R∪I=C,

R*=R{0}=R-∪R+=(-∞,0)∪(0,+∞),

R=R-∪R+∪{0}=R*∪{0}={小数}=Q∪{无理数}={循环小数}∪{非循环小数}。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.