步骤/方式1
设矩阵A为m*n阶矩阵。矩阵A的秩为r,若r=n,则矩阵列向量组线性无关,若r
步骤/方式2
向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。
包含零向量的任何向量组是线性相关的。含有相同向量的向量组必线性相关。增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的),举例如
步骤1
显式向量组:将向量按列向量构造矩阵A,对A实施初等行变换, 将A化成梯矩阵,梯矩阵的非零行数即向量组的秩向量组线性相关 <=> 向量组的秩<向量组所含向量的个数。
步骤2
隐式向量组:一般是设向量组的一个线性组合等于0,若能推出其组合系数只能全是0, 则向量组线性无关,否则线性相关。