柯西不等式公式四个:(a²+b²)(c²+d²)≥(ac+bd)²;√(a²+b²)+√(c²+d²)≥√[(a-c)²+(b-d)²];|α||β|≥|α·β|;(∑ai²)(∑bi²)≥(∑ai·bi)²。
柯西不等式是由大数学家柯西在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式
最简单柯西不等式:
1、二维形式:
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
2、三角形式:
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
3、向量形式:
|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)
等号成立条件:β为零向量,或α=λβ(λ∈R)。
4、一般形式:
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。