1859年,德国数学家黎曼发表了《论小于已知数的素数个数》论文。在文章中,黎曼定义了一个函数:黎曼ζ(zeta)函数,并推测,ζ函数会在某些点上取值为零,在这些点中,有些被称作非平凡零点,这些非平凡零点都分布在一条特殊的直线上,这条直线通过实轴上的点(1/2,0)并和虚轴平行,非平凡零点的实数部分(实部)都是1/2。
这个推测也被称为黎曼猜想,即一种假说。提出一个假说似乎容易,但证明它却要花费极大的力气,这个假说困扰了数学界整整159年。
黎曼猜想(或称黎曼假设)是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼于1859年提出。德国数学家戴维·希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼假设。
黎曼论文的一个重大的成果,就是发现了质数分布的奥秘完全蕴藏在一个特殊的函数之中,尤其是使那个函数取值为零的一系列特殊的点对质数分布的细致规律有着决定性的影响。那个函数如今被称为黎曼ζ函数,那一系列特殊的点则被称为黎曼ζ函数的非平凡零点。