三次函数的韦达定理公式(三次函数韦达定理公式)

三次函数的韦达定理公式(三次函数韦达定理公式)

首页维修大全综合更新时间:2025-06-02 19:50:30

三次函数的韦达定理公式

一元三次方程定理为:x1x2x3=-d/a

以下为证明:

ax^3+bx^2+cx+d

=a(x-x1)(x-x2)(x-x3)

=a[x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3]对比系数得

-a(x1+x2+x3)=b

a(x1x2+x2x3+x1x3)=c

a(-x1x2x3)=d

即得

x1+x2+x3=-b/a

x1x2+x2x3+x1x3=c/a

x1x2x3=-d/a

定理意义:

韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。

一元二次方程的根的判别式为 (a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项),韦达定理与根的判别式的关系更是密不可分。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.