答:正四面体重心坐标公式:
数学计算的理论上:M1=M2=M3=M4=...=Mn=1,得出
Xg =(X1+X2+X3+...+Xn)/n
Yg =(Y1+Y2+Y3+...+Yn)/n
Zg =(Z1+Z2+Z3+...+Zn)/n
重心坐标的公式:平面直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z2)/3设三点为A(x1.y1),B(x2,y2),C(x3,y3)重心坐标(xm,ym)考虑xm,任取两点(不妨设为A和B),则重心在以AB为底的中线上.AB中点横坐标为(x1+x2)/2重心在中线距AB中点1/3处故重心横坐标为xm=1/3*(x3-(x1+x2)/2)+(x1+x2)/2=(x1+x2+x3)/3同理,ym=(y1+y2+y3)/3三角形的重心就是三边中线的交点。线段的重心就是线段的中点。平行四边形的重心就是其两条对角线的交点,也是两对对边中点连线的交点。平行六面体的重心就是其四条对角线的交点,也是六对对棱中点连线的交点,也是四对对面重心连线的交点。圆的重心就是圆心,球的重心就是球心。锥体的重心是顶点与底面重心连线的四等分点上最接近底面的一个。四面体的重心同时也是每个定点与对面重心连线的交点,也是每条棱与对棱中点确定平面的交点。