抛物线的切线方程公式是y=(2ap+b)(x-p)+q。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像
抛物线的切线方程是y'=2ax+b,切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究,分析方法有向量法和解析法。
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。当a与b同号时(即ab>0),对称轴在y轴左侧; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,若要b/2a大于0,则a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右侧。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,若要b/2a小于0,则a、b要异号