1.有理数的乘法法则:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数同0相乘,都得0.
2. 有理数的乘法法则的推广:
(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;
(2)几个数相乘,如果有一个因数为0,那么积就等于0.
3. 有理数的乘法运算律:
(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).
(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.
1、
2、
有理数的除法
1.倒数的意义: 乘积是1的两个数互为倒数.
2. 有理数除法法则:
法则一:除以一个不等于0的数,等于乘这个数的倒数,即.
法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.