如何证明三角形两边之差小于第三边

如何证明三角形两边之差小于第三边

首页维修大全综合更新时间:2023-06-27 15:19:59

如何证明三角形两边之差小于第三边

设三角形的三边长分别为a,b,c. 因为三角形任意两边之和大于第三边,所以有:

a+b>c

a+c>b

b+c>a

根据不等式定理——不等式两边同时加或减同一个数,不等式方向不变,可得

a>c-b, b>c-a

同理,可证明其它

即三角形中两边之差小于第三边。

设在三角形ABC,若AB>BC,求证:AB-BC<AC。

证明:

延长BC到D,使BD=AB,连接AD。

∵BD=AB,

∴∠D=∠BAD,

∵∠CAD=∠BAD-∠BAC=∠D-∠BAC,

∴∠CAD<∠D

∵在△ACD中,∠CAD<∠D,

∴CD<AC(大角对大边),

∵CD=BD-BC=AB-BC,

∴AB-BC<AC。

三角形的性质:

1、在平面上三角形的内角和等于180°(内角和定理)。

2、在平面上三角形的外角和等于360°(外角和定理)。

3、在平面上三角形的外角等于与其不相邻的两个内角之和。

4、一个三角形的三个内角中最少有两个锐角。

5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6、三角形任意两边之和大于第三边,任意两边之差小于第三边。

三角形有四线,分别为中线,高,角平分线、中位线。其性质分别有:

1、中线

定义:三角形的中线是连接三角形的一个顶点及其对边中点的线段,一个三角形有3条中线。

性质:三角形的三条中线总是相交于同一点,这个点称为三角形的重心,重心分中线为2:1(顶点到重心:重心到对边中点)。

2、高

定义:从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段。

性质:

(1)锐角三角形:三条高都在三角形的内部。交点也在三角形的内部。

(2)直角三角形:两条高分别在两条直角边上,另一条高在三角形的内部。交点是直角的顶点。

(3)钝角三角形:钝角的两边上的高在三角形外部。交点在三角形的外部。

3、角平分线

定义:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段。

性质:

(1)三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心(即以此点为圆心可以在三角形内部画一个内切圆)。 

(2)三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

4、中位线

定义:三角形的三边中任意两边中点的连线。

性质:三角形的中位线平行于第三边并且等于第三边边长的一半。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.