多边形内角和公式推导:n边形的内角和=(n-2)×180°,在n边形内任取一点,然后把这一点与各顶点连结,将n边形分割为n个三角形,这n个三角形的内角和比n边形的内角和恰好多了一个周角360°。
在n边形的一边上取一点,把这一点与各顶点连结,把n边形分割为(n-1)个三角形,这些三角形的内角和比n边形的内角和多出了一个平角,因此,n边形的内角和=(n-1)×180°-180。在n边形外任取一点,然后把这一点与各顶点连结,将n边形分割为n个三角形,这n个三角形的内角和比n边形的内角和恰好多出了两个三角形内角和。