韦达定理
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
在中学课程中所指的韦达定理就是一元二次方程中的根与系数的关系,具体的说就是在元一二次方程ax^2+bx+c=0中,它的两个根是x1,x2。则
x1+x2=-b/a
x1x2=c/a
语言叙述就是:
如果一元二次方程有两个根,则两根之和等于负的a分之b
两根之积等于a分之c