求函数周期的方法总结如下:
1、y=sinx/cosx=tanx,T=Pi 。
2、周期函数的积;商:y=y1y2;y=y1/y2的周期的情况比较复杂,只能够化成一个角的一个函数以后在来求周期。
例如 :y=sinxcosx=1/2*sin2x,T=Pi 。
y=(sinx)^2+(cosx)^2,T∈R。
y=sin3x/sinx=3-4(sinx)^2=2+cos2x,T=Pi。
它的周期似乎与T(sin3x)=2P1/3和T(sinx)=2Pi的关系不大,此外二无理数之间不存在公倍数。
函数周期性的关键的几个字“有规律地重复出现”。当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现。
假如函数f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T是函数的一个周期.T的整数倍也是函数的一个周期。
周期函数性质:若T(≠0)是f(X)的周期,则-T也是f(X)的周期。若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。